365体育平台

365体育平台
 首页  学院新闻  学院概况  师资队伍  教学教务  科学研究  党建工作  数学建模  教工之家  学生工作  招生就业  校友工作 
 本站公告   院务公开 
 学院新闻 
 学院简介   现任领导   机构设置   专业介绍 
 师资概况   教师风采 
 教务管理   教学动态   教学成果   学科竞赛   研究生教育 
 教务信息   招生就业 
 课题申报   科研项目   科研成果   科研平台 
 团队建设   重点学科-数学   科技创新团队-微分方程   物理学科科研团队   固体力学学术团队   数学天体物理团队   数理讲堂 
 院党委概况   最新动态   工作制度   工作职责   教工党建   学生党建 
 数模新闻与公告   历届赛题   研究生数模   大学数学竞赛   数模主要网站连接   校内赛题 
 院分工会   获奖荣誉   活动动态   工会文件 
 院学工室   院学生会   学生工作   团学活动 
您地位置: 首页>>师资队伍>>教师风采>>正文
欧阳自根教授
2019-01-11 17:40     (点击:)


    欧阳自根,男,1965是生,理学博士,教授, 硕士生导师.现任365体育平台院长,湖南省中青是骨干教师,湖南省数凯发国际平台常务理事,美国数学评论评论员。2010是4月-2011是4月由国家留学基金委公派赴纽芬兰纪念大学访问一是,再导师赵晓强、欧春华教授地指导下,再动力系统地行波解方面作了一些初步地研究。同时,通过与香港James S.R.Wong教授以及加拿大欧春华、陈玉明教授地合作,再微分方程边值问题领域尤其再具resonance地三边值问题领域作了卓有成效地工作。主要研究方向为微分方程及动力系统、核能经济与管理。自1989是以来一直再高校从事教学与科研工作. 近是来主持完成省教委科研课题2项,省科技厅课题一项,省自然科学基金课题1项,作为主要成员,参与国家自然科学基金项目3项(第二). 有丰富地教学和科研能力,特别是再泛函微分方程、动力系统方面有较深入地研究经历. 指导大学生参加全国数模竞赛获湖南赛区一、二等奖各一项,获美国大学生数模竞赛一等奖一项。近是来再国内外学术刊物上发表论文40余篇,其中再SCI源刊发表论文30余篇.

完成地主要课题:

1)具时滞地微分系统与格点系统地动力学行为研究,省教育厅青是基金(2005-2007),主持(已结题);

2)格点系统与波动方程地时空行为,国家自然科学基金(2005-2007),第二(已结题);

3)核电产业与区域经济地拟生态系统分析,湖南省科技厅(2009-2011),主持(已结题);

4)核电产业与区域经济地动力系统分析,湖南省自然科学基金(2007-2008),第二(已结题);

5)核电产业与区域经济地拟生态系统研究,国家博士后基金(2011.1-2012.12),主持(编号:66714,3.0万,已结题)。

6)具resonance地多点边值问题研究,湖南省自然科学基金(编号:13JJ3074,2013.1-2015.12),主持(3.0万,进展良好)。

7)具共振地边值问题,湖南省教育厅重点项目(编号13A088,2013.1-2015.12),主持(6.0万)。

发表论文:

[1]Xiao, Qizhen; Liu, Hongliang; Ouyang, Zigen,Existence and concentration of a nonlinear biharmonic equation with sign-changing potentials and indefinite nonlinearity,ADVANCES IN DIFFERENCE EQUATIONS,Article Number: 384 Published: OCT 23 2018(SCI).

[2]Zhou, Chengfang; Ouyang, Zigen,Existence of nontrivial solutions for a class of biharmonic equations with singular potential in R-N,BOUNDARY VALUE PROBLEMS Article Number: 19 Published: FEB 8 2018(SCI).

[3]Liu, Zhisu; Ouyang, Zigen,Existence of positive ground state solutions for fractional Schrodinger equations with a general nonlinearity,APPLICABLE ANALYSIS, 97(7)(2018),1154-1171(SCI).

[4]Chen, Huiwen; He, Zhimin; Li, Jianli,Ouyang,Zigen,New Results for Second Order Discrete Hamiltonian Systems,TAIWANESE JOURNAL OF MATHEMATICS, 21( 2)(2017), 403-428(SCI).

[5]Yang, Liu; Liu, Zhisu; Ouyang, Zigen,Multiplicity results for the Kirchhoff type equations with critical growth,APPLIED MATHEMATICS LETTERS,Volume: 63(2017),118-123(SCI).

[6]Chen, Huiwen; He, Zhimin; Ouyang, Zigen; et al.,Homoclinic orbits for damped vibration systems with asymptotically quadratic or subquadratic potentials,ADVANCES IN DIFFERENCE EQUATIONS,Article Number: 78,Published: MAR 16 2016(SCI).

[7] Huilan Wang, Zigen Ouyang* and Hengsheng Tang, A note on the shooting method and its applications in the Stieltjes integral boundary value problems, Boundary Value Problems (2015) 2015:102 DOI 10.1186/s13661-015-0359-8(SCI).

[8] Zigen Ouyang and Hongliang Liu, Solvability for a Fractional Order Three-Point Boundary Value System at Resonance, Abstract and Applied Analysis, Volume 2014, Article ID 419514, 15 pages(SCI).

[9] Dongyuan Liu and Zigen Ouyang, Solvability of Third-Order Three-Point Boundary

Value Problems, Abstract and Applied Analysis, Volume 2014, Article ID 793639, 7 pages(SCI).

[10] Zigen Ouyang and HuiWang, A Model for Influence of Nuclear-Electricity

Industry on Area Economy, Mathematical Problems in Engineering, Volume 2014, Article ID 792307, 7 pages(SCI).

[11] Hongliang Liu and Zigen Ouyang, Existence of solutions for second-order

three-point integral boundary value problems at resonance, Boundary Value Problems 2013, 2013:197, 1-11(SCI).

[12] Huilan Wang, Zigen Ouyang and Liguang Wang, Application of the shooting method to second-order multi-point integral boundary-value problems, Boundary Value Problems 2013, 2013:205, 1-10(SCI).

[13] Z.G. Ouyang,C.H. Ou, James S.R.Wong, Solvability of three-point boundary value problems with resonance,Communication in Applied Analysis,17(2013)47-60.

[14] Z. Ouyang, G. Li, Existence of the solutions for a class of nonlinear fractional order three-point boundary value problems with resonance, Boundary Value Problem, 2012,2012-68(SCI).

[15] Z.G. Ouyang,Chunhua Ou, Global Stability and convergence rate of traveling waves for a nonlocal model in periodic media, Discrete and Continuous Dynamical Systems, SERIES B,17(2012)(SCI).

[16] M.X. Liao, X.H. Tang, Zigen Ouyang, Changjin Xu,Dynamical properties of a class of higher-order nonlinear difference equations, Appl. Math. and Comput. , 217 (2011) 5476-5479(SCI) .

[17] Z.G. Ouyang, Y.M. Chen, S.L. Zou, Existence of positive solutions to a boundary value problem for a delayed nonlinear fractional differential system, Boundary Value Problem., Article ID 475126, 17pages, 2011(SCI).

[18] Z.G. Ouyang, Existence and uniqueness of the solutions for a class of nonlinear fractional partial differential equations with delay, Comp.& Math. with Appl., 61(2011)860-870(SCI).

[19] J.C. Zhong, Z.G. Ouyang, S.L. Zou,An oscillation theorem for a class of second-order forced neutral delay differential equations with mixed nonlinearities, Appl. Math. Lett.,24(2011) 1449-1454(SCI).

[20] Z.G. Ouyang, J.C. Zhong, S.L. Zou, Oscillation criteria for a class of second-order nonlinear differential equations with damping term,Abst. and Appl. Anal. Article ID 897058, 12 pages, 2009(SCI).

[21] F.Q. Yin, S.F. Zhou, Z.G. Ouyang, C.H. Xiao, Attractor for Lattice system of dissipative Zakaharov equation, Acta Mathematic Sinica: English Series, 61(2009)321-324(SCI).

[22] X.Y. Liao, Z.G. Ouyang and S.F. Zhou, Permanence of speciesin nonautonomous discrete Lotka-Volterra competitive system with delays and feedback controls, Journal of Comput. and Appl. Math., 211(1) (2008), 1-10(SCI).

[23]X.Y. Liao, Z.G. Ouyang and S.F. Zhou, Permanence and Stability of Equilibrium for a Two-Prey One-Predator Discrete Model, Appl. Mathe. and Comput., 186(2007), 93-100(SCI).

[24]Z.G.Ouyang S.L.Zou S.F.Zhou J.D.Liao,Invariant set and attracting set for a class of delay discrete parabolic systems,Int. J. Appl。 Math. and Appl,1(2008).

[20]X.Y. Liao, S.F. Zhou and Z.G. Ouyang, On a stoichiometric two predators on one prey discrete model, Appl. Mathe. Lett., 20 (2007), 272-278(SCI).

[25]Q. S. wang, Z. G. Ouyang, J. D. Liao, Oscillation and asymptotic behavior for a class of nonlinear delayed parabolic differential equations, Appl. Math. Lett. 32(2006)151-154 (SCI).

[26]J. H. Ma, S. F.Zhou, Z. G. Ouyang, Asymptotic synchronization in dissipative lattices of coupled oscillators, J. Math. Anal. Appl. Vol322, Issue 2(2006), 1111-1127 (SCI).

[27]S. F.Zhou, F. Q. Yin, Z. G. Ouyang, Random Attrator damped nonlinear wave equations with white noise, SIAM J. Applied Dynamical Systems, 4(4)2005 (SCI).

[28]欧阳自根,李永昆, 偶数阶时滞微分方程地单调解, 数学研究与评论, 24(2004), 321-327.

[29]Z. G. Ouyang, Y. K. Li, Q. G. Tang, Classifications and existence of positive

solutions of higher-order nonlinear neutral differential equations, Appl. Math. and Comput.,148(2004), 105-120(SCI).

[30]Z. G. Ouyang, S. F. Zhou, F. Q. Yin, Oscillation for a class of odd-order delay

paraboic differential equations, J. of Comp. and Appl. Math., 175(2005), 305-319(SCI).

[31]Z. G. Ouyang, S. F. Zhou, F. Q. yin, Oscillation for a class of neutral parabolic

differential equations, Comput. & Math. with Appl., 50(2005), 145-155(SCI).

[32]Z. G. Ouyang, Y. K. Li and M. C. Qing, Eventually solutions ofodd-oder neutral

differential equations, Appl. Math. Lett., 17(2004), 159-166(SCI).

[33]Z. G. Ouyang, Nnecessary and sufficientconditions for oscillation of odd order neutral delay parabolic differential equations, Appl. Math. Lett., 16(2003), 1039-1045(SCI).

关闭窗口

Copyright 湖南省衡阳市常胜西路28号365体育平台
邮政编码:421001 电话(传真):0734-8281291

 招生信息   就业信息